
CSC 108H: Introduction to Computer
Programming

Summer 2012

Marek Janicki

May 24 2012

Administration

● Office hours

● Held in BA 2270 at M4-6, F2-4
● The second ramp-up session hasn't happened yet.

● Saturday 10am - 4pm
● In BA 3185
● Register on the CSC 148 website.

● Help centre is now open.

● BA 2270 M-R 2-4

May 24 2012

Administration

● Exercise 1 is up, premarking will go live
tomorrow.

● If you don't have a cdf account/can't login yet,
talk to the cdf support staff.
● Try to login to Markus tonight or tomorrow, and let

me know if you can't.

● Anonymous Feedback.
● Some people have asked for more detailed

python installation instructions.
● I will do them tomorrow post pre-marking setup.

May 24 2012

Last Week

● Variables.
● a name that refers to some value.
● assigned with:
name = expression

● The expression is any legal python statement that
can evaluate to one value.

● variable names can consist of digits, letters and
underscores.

● convention in python is to use pothole_case.

May 24 2012

Variable exercises

● Write code to
swap the values
of x and y given
the following:

x = 10

y = 11

What values do x
and y refer to
here?

x = 10

y = x

x = y+11

y = y+5

● What assignment
statement has
incorrect syntax?

x = (12 -12)*y

y + x + y

x+x = 20

x = x + x + x*y

May 24 2012

Variable exercises

● Write code to
swap the values
of x and y given
the following:

x = 10

y = 11

● What values do x
and y refer to
here?

x = 10

y = x

x = y+11

y = y+5

● What assignment
statement has
incorrect syntax?

x = (12 -12)*y

y + x + y

x+x = 20

x = x + x + x*y

● x refers to 21

● y refers to 15

tmp = x

x = y

y = tmp

May 24 2012

Last Week

● Functions.
● A way to reuse code.
● created by:
def name(parameters):

 block

● called by:
name(expressions)

● Will evaluate to None or the return value if one
exists.

May 24 2012

Basic Function Exercises

def f(x):

 return x + 4

x = f(1)

y = 12

print x + y

def f(x):

 print x + 4

x = f(11)

y = 12

z = 13 + y

x = x + z

● One of the following will cause a crash.
● Which one, why?

May 24 2012

Basic Function Exercises

def f(x):

 return x + 4

x = f(1)

y = 12

print x + y

def f(x):

 print x + 4

x = f(11)

y = 12

z = 13 + y

x = x + z

● One of the following will cause a crash.
● Which one, why?

May 24 2012

Basic Function Exercises

def f(x):

 return x + 4

x = f(1)

y = 12

print x + y

def f(x):

 print x + 4

x = f(11)

y = 12

z = 13 + y

x = x + z

● One of the following will cause a crash.
● Which one, why?

May 24 2012

Why functions?

● Allow us to reuse bits of code, which
makes updating and testing much easier.
● Only need to test and update the function,

rather than every place that we use it.
● Chunking! Allows us to parse information

much better.
● Human mind is pretty limited in what it can

do.
● Function names allow us to have a shorthand

for what a function does.

May 24 2012

Functions in detail

● We missed or didn't cover a lot of stuff in
the first lecture.
● print vs. return.
● variable scope.
● nesting function calls.
● designing functions
● function documentation.

May 24 2012

Aside: Command Line Python

● Python can be run from the command line.
● Usually referred to as a terminal in OS

X/Linux
● Start -> run -> cmd.exe in Windows.

● Can run python files with
● python file_name.py
● python will just run the shell.

● Command line python allows one to use
python in scripts, and is faster.

May 24 2012

Print vs. Return

● Recall that functions end if they see a return
statement, and return the value of the expression after
the keyword return.

● If there is no return statement, the function returns
None.

● We've also seen snippets of the print statement.

● Print takes one or more expressions separated by a
comma, and prints them to the screen.

● This is different than a return statement, but looks
identical in the shell.

May 24 2012

Variable scope

● Scope refers to the area in which a
variable is defined.
● If there is an undefined variable the code will

crash.
● Knowing scope is key to being able to trace

code.
● There are two types of variables:

● Local variables defined in functions
● Global variables defined in the body of the

program.

May 24 2012

Local Variables.

● Defined within a function.
● They exist only during a function call.
● They stop existing one the function call is

resolved, and are recreated if the function is
called again.

● The parameters are viewed as local variables.

def name(parameters):

 block

May 24 2012

Local Variables.

● Defined within a function.
● They exist only during a function call.
● They stop existing one the function call is

resolved, and are recreated if the function is
called again.

● The parameters are viewed as local variables.

def name(parameters):

 block

May 24 2012

Global variables

● Defined outside of
a function.

● Exist between
function calls.

● Cannot be changed
by a function call!

def name(parameters):

 block1

block2

May 24 2012

Global variables

● Defined outside of
a function.

● Exist between
function calls.

● Cannot be changed
by a function call!

def name(parameters):

 block1

block2

Local Scope

Global Scope

May 24 2012

Global variables

● Defined outside of
a function.

● Exist between
function calls.

● Cannot be changed
by a function call!

def name(parameters):

 block1

block2

Local Scope

Global Scope

May 24 2012

Variable name overlap

● It is possible for local and global variables
to have the same name.

● If this occurs, python will use the local
variable.

● In general, if python sees a variable name,
it will try and use as local a variable name
as possible.

May 24 2012

Local variable question

● def f(x):

 return x + 4

z = 4

z = f(12)

f(33)

z = f(z)

● If we execute the
code on the left,
what values does x
refer to over the
course of the
execution?

May 24 2012

Local variable question

def f(x):

 return x + 4

z = 4

z = f(12)

f(33)

z = f(z)

● If we execute the
code on the left,
what values does x
refer to over the
course of the
execution?

12

33

16

May 24 2012

Nesting Function calls

● Sometimes we want to have functions
calling other functions.
● f(g(4))

● In this case, we use the 'inside out' rule,
that is we apply g first, and then we apply f
to the result.

● If the functions can have local variables,
this can get complicated.

May 24 2012

Variable Lookup

● First, check local variables defined in a
function.

● Then check local variables in an enclosing
function.
● That is for f(g(4)) it will check g's local

variables first, and then f's local variables.
● Then check global variables.

May 24 2012

How to think about scope.

● We use namespaces.
● A name space is an area in which a

variable is defined.
● Each time we call a function, we create a

local namespace.
● We refer to that first, and go down to the

enclosing functions name space or global
namespace as necessary.

May 24 2012

Namespaces

def f(x):

 return x + 4

def g(y):

 return f(y) + 10

z = 14

z = z + g(z)

Global namespace

May 24 2012

Namespaces

def f(x):

 return x + 4

def g(y):

 return f(y) + 10

z = 14

z = z + g(z)

Global namespace
G local namespace

May 24 2012

Namespaces

def f(x):

 return x + 4

def g(y):

 return f(y) + 10

z = 14

z = z + g(z)

Global namespace

F local namespace
G local namespace

May 24 2012

Call Stack

● The mechanism through which python
does lookups.

● Python starts with a lookup table for global
variables.

May 24 2012

Lookup Table

● Variables on one side, memory addresses
on the other.

● Useful to write something that indicates
what namespace the look up table refers
to.

x: 0x3
y: 0x2
Global

May 24 2012

Call Stack

● The mechanism through which python
does lookups.

● Python starts with a lookup table for global
variables.

● Each time a function call is evaluated a
new lookup table for local variables is
created.

● This table is put 'on top' of the currently
extant tables.

May 24 2012

Call Stack

● To look up a variable one tries to find it in
a lookup table.

● Start at the top, and go down until one
finds a lookup table that contains the
variable one is looking for.

● If one can't find it, the program crashes.
● Note: A variable can only exist at most

once in a given lookup table.

May 24 2012

Call Stack example.

def f(x):

 return x + 4

def g(y):

 return f(y) + 10

z = 14

z = z + g(z)

May 24 2012

Call Stack example.

def f(x):

 return x + 4

def g(y):

 return f(y) + 10

z = 14

z = z + g(z)

z: 0x1
Global

May 24 2012

Call Stack example.

def f(x):

 return x + 4

def g(y):

 return f(y) + 10

z = 14

z = z + g(z)

z: 0x1
Global
y: 0x1

g

May 24 2012

Call Stack example.

def f(x):

 return x + 4

def g(y):

 return f(y) + 10

z = 14

z = z + g(z)

z: 0x1
Global
y: 0x1

g
x: 0x1

f

May 24 2012

Why do we care about Namespaces
and Call Stacks?

● Understanding this will make tracing
easier.
● The better this can be internalised, the more

one can trace code without needing to
explicitly write things down.

● Useful for debugging.
● Common stumbling block for beginners.

May 24 2012

Break, the first

May 24 2012

Break, the first.

def f(x):

 return x + 4

def g(x):

 return x + f(4)

z = 3

g(z)

y = 5

● Draw the call stack
at the indicated
points in the
execution.

May 24 2012

Break, the first.

def f(x):

 return x + 4

def g(x):

 return x + f(4)

z = 3

g(z)

y = 5

● Draw the call stack
at the indicated
points in the
execution.

z: 0x1
Global

May 24 2012

Break, the first.

def f(x):

 return x + 4

def g(x):

 return x + f(4)

z = 3

g(z)

y = 5

● Draw the call stack
at the indicated
points in the
execution.

x: 0x1
g

z: 0x1
Global

May 24 2012

Break, the first.

def f(x):

 return x + 4

def g(x):

 return x + f(4)

z = 3

g(z)

y = 5

● Draw the call stack
at the indicated
points in the
execution.

x: 0x2
f

z: 0x1
Global
x: 0x1

g

May 24 2012

Break, the first.

def f(x):

 return x + 4

def g(x):

 return x + f(4)

z = 3

g(z)

y = 5

● Draw the call stack
at the indicated
points in the
execution.

z: 0x1
Global

May 24 2012

Break, the first.

def f(x):

 return x + 4

def g(x):

 return x + f(4)

z = 3

g(z)

y = 5

● Draw the call stack
at the indicated
points in the
execution.

z: 0x1
y: 0x3

Global

May 24 2012

Global or Local Variables?

● Functions can reference global variables.
● Global variables can also be passed to

functions.

May 24 2012

Global or Local Variables?

● Functions can reference global variables.
● Global variables can also be passed to

functions.
● The latter is strongly preferred.

● The former tends to make code hard to read
and prone to errors.

● Global variables tend to be used only for
constants that will never change.

May 24 2012

Designing Functions

● Need to choose parameters.
● Ask “what does the function need to know”.
● Everything it needs to know should be

passed as a parameter.
● Do not rely on global parameters.

● Need to choose whether to return or not to
return.

➢ Functions that return information to code should
return, those that show something to the user
shouldn't (print, media.show(), etc).

May 24 2012

Function Documentation

● Recall that we can use the built-in function
help() to get information on functions or
modules.

● We can do this on functions that we've
defined as well, but it doesn't give much
information.

● We can add useful documentation with
docstrings.
● A docstring is surrounded by ''' and must be

the first line of a module or function.

May 24 2012

Docstrings

● If the first line of a function or module is a
string, we call it a docstring.
● Short for documentation string.

● Python saves the string to return if the
help function is called.

● Convention: Leave a blank line after but
not before a docstring.

● The first line of a docstring should contain
information about the parameter and
output types.

May 24 2012

Docstrings

● The first line of a docstring should contain
information about the parameter and
output types.
(int, float) -> int
picture -> NoneType
NoneType -> float

May 24 2012

First line of docstrings.

● Write a plausible first line docstring for the
following function headers:

def f(x, z):

def f():

def f(x, y, z)

May 24 2012

First line of docstrings.

● Write a plausible first line docstring for the
following function headers:

def f(x, z):

'''(int, float) -> float'''

def f():

'''NoneType -> int '''

def f(x, y, z)

'''(float, float, int) -> NoneType'''

May 24 2012

Why Docstrings?

● If you write the docstring first, you have an
instant sanity check.

● Makes portability and updating easier.
● Allows other people to know what your

functions do and how to use them, without
having get into the code.

● Allows for good chunking.
● Every Function should have a docstring!

May 24 2012

Writing Good Docstrings.

● '''A sunset module.'''
● '''Changes into a sunset.'''
● These are terrible docstrings.

● They are vague and ambiguous. The don't
tell us what the function expects or what it
does.

● How can we make it better?

May 24 2012

Writing Good Docstrings.

● Describes what a function does.
● '''Changes into a sunset.'''
● '''Makes a picture look like it was taken at

sunset.'''
● '''Makes a picture look like it was taken at

sunset by decreasing the green and blue
by 70%.'''

May 24 2012

Writing Good Docstrings.

● Describes what a function does.
● '''Changes into a sunset.'''
● '''Makes a picture look like it was taken

at sunset.'''
● '''Makes a picture look like it was taken

at sunset by decreasing the green and
blue by 70%.'''

May 24 2012

Writing Good Docstrings.

● Does not describe how a function works.
● More useful for chunking, and it's

unnecessary information if we're using the
function.

● '''Makes a picture look like it was taken at
sunset.'''

● '''Makes a picture look like it was taken at
sunset by decreasing the green and blue
by 70%.'''

May 24 2012

Writing Good Docstrings.

● Does not describe how a function works.
● More useful for chunking, and it's

unnecessary information if we're using the
function.

● '''Makes a picture look like it was taken
at sunset.'''

● '''Makes a picture look like it was taken at
sunset by decreasing the green and blue
by 70%.'''

May 24 2012

Writing Good Docstrings.

● Makes the purpose of every parameter
clear and refers to the parameter by
name.

● '''Makes a picture look like it was taken at
sunset.'''

● '''Takes a given picture and makes it look
like it was taken at sunset.'''

● '''Takes a picture pic and makes it look like
it was taken at sunset.'''

May 24 2012

Writing Good Docstrings.

● Makes the purpose of every parameter
clear and refers to the parameter by
name.

● '''Makes a picture look like it was taken at
sunset.'''

● '''Takes a given picture and makes it look
like it was taken at sunset.'''

● '''Takes a picture pic and makes it look
like it was taken at sunset.'''

May 24 2012

Writing Good Docstrings.

● Be clear if a function returns a value, and
if so, what.

Consider average_red(pic)
● '''Computer the average amount of red in a

picture.'''
● '''Returns the average amount of red (a

float) in a picture pic.'''

May 24 2012

Writing Good Docstrings.

● Make sure to explicitly state any
assumptions the function has.

def decrease_red(pic,percent)
● '''Decreases the amount of red per pixel in

picture pic by int percent. percent must be
between 0 and 100.'''

May 24 2012

Writing Good Docstrings.

● Be concise and grammatically correct.
● Use commands rather than descriptions.
● '''Takes a picture pic and makes it appear

as it if was taken at sunset.'''
● '''Take picture pic and make it appear to

have been taken at sunset.'''

May 24 2012

Writing Good Docstrings.

● Docstrings do not include definitions or
hints.

● The docstring for sqrt is not:

'''Return the sqrt of (x). The sqrt of x is a
number, that when multiplied by itself
evaluates to x'.

● Is it simply:
● Return the square root of x.

May 24 2012

Writing Good Docstrings.

● Describes what a function does.

● Does not describe how a function works.

● Makes the purpose of every parameter clear and
refers to the parameter by name.

● Be clear if a function returns a value, and if so, what.

● Make sure to explicitly state any assumptions the
function has.

● Be concise and grammatically correct.

● Use commands rather than descriptions.

May 24 2012

Break, the second.

May 24 2012

Break, the second.

● What's the better docstring?

def g(x,y):

 '''(int, int) -> int
 multiplies two
 numbers'''

def f(x,y):

 '''Adds two
 numbers'''

def f(x,y):

 '''int -> int
Adds two numbers'''

def g(x,y):

 '''multiplies two
 numbers'''

def max(x,y):

 '''(int, int) -> int
 takes two numbers
 and returns the
 maximum.'''

def max(x,y):

 '''(int, int) -> int
 returns the maximum
 of two numbers.'''

May 24 2012

Break, the second.

● What's the better docstring?

def g(x,y):

 '''(int, int) -> int
 multiplies two
 numbers'''

def f(x,y):

 '''Adds two
 numbers'''

def f(x,y):

 '''int -> int
Adds two numbers'''

def g(x,y):

 '''multiplies two
 numbers'''

def max(x,y):

 '''(int, int) -> int
 takes two numbers
 and returns the
 maximum.'''

def max(x,y):

 '''(int, int) -> int
 returns the maximum
 of two numbers.'''

May 24 2012

Adaptive Programs

● We've seen programs that are executed
line by line.
● Even if they had function calls, we could

expand these to something that was line by
line.

● This is very limited.
● Can't make choices, adapt to information.

May 24 2012

Booleans: A new type.

● Can have two values True, False.
● Have three operations: not, and, or.
● not changes a True to a False and vice

versa.
● and returns False unless all the

arguments are True.
● or returns True unless all the arguments

are False.

May 24 2012

Truth Tables

● A way of representing boolean
expressions.

x y not x not y x and y x or y

True True False False True True

True False False True False True

False True True False False True

False False True True False False

May 24 2012

What if we want to adapatively assign
Boolean values.

● We can use relational operators.
● <,>,<=,>=,!=, ==

● These are all comparison operators that
return True or False.

● == is the equality operator.
● != is not equals.

May 24 2012

Boolean Expressions and
Representation

● Can combine boolean operators (and, or,
not) and relational operators (<,>,etc) and
arithmetic operators (+,-,*, etc).
● 5+7<4*3 or 1-2 >2-4 and 15==4 is a legal

expression.
● Arithmetic goes before relational goes before

boolean.
● False is represented as 0, and True is

represented as 1.
➢ Can lead to weirdness. Best to avoid exploiting

this.

May 24 2012

Boolean Exercises

What do these expressions
evaluate to?

not (True and False)

(True or False) and (True
and not False)

(not(True or False)) or
 (not(True and False))

True and (10 > 11)

(4*3) == 12

((4*3) == 12) and (5>11)

not ((4*3) != 12)

May 24 2012

Boolean Exercises

What do these expressions
evaluate to?

not (True and False)

True

(True or False) and (True
and not False)

True

(not(True or False)) or
 (not(True and False))

True

True and (10 > 11)

False

(4*3) == 12

True

((4*3) == 12) and (5>11)

False

not ((4*3) != 12)

True

May 24 2012

Short Circuit Evaluation

● Python only evaluates a boolean
expression as long as the answer is not
clear.
● It will stop as soon as the answer is clear.

● This, combined with the nature of boolean
representation can lead to strange
behaviour.

● Exploiting these behaviours is bad style.

May 24 2012

How to use boolean variables

● Recall that we want to make our code
adaptive.

● To use boolean variables to selectively
execute blocks of code, we use if
statements.

May 24 2012

If statement

● The general form of an if statement is:
if condition:

 block

● Example:
if grade >=50:

 print “pass”

May 24 2012

If statement

● The general form of an if statement is:
if condition:

 block

● The condition is a boolean expression.
● Recall that a block is a series of python

statements.
● If the condition evaluates to true the

block is executed.

May 24 2012

Other Forms of if statement

● If we want to execute different lines of
code based on the outcome of the
boolean expression we can use:
if condition:

 block

else:

 block

● The block under the else is executed if the
condition evaluates to false.

May 24 2012

More general if statement.

if condition1:
 block
elif condition2:
 block
elif condition3:
 block
else:
 block

● Python evaluates the
conditions in order.

● It executes the block of
the first (and only the
first) condition that is
true.

● The final else is
optional.

May 24 2012

Style advice for booleans.

● If you are unsure of precedence, use
parentheses.
● Will make it easier for a reader.
● Also use parentheses for complicated

expressions.
● Simplify your Boolean expressions.

● Get rid of double negatives, etc.

May 24 2012

Boolean Docstrings.

● def: is_odd(x):

return (x%2)==1
● The docstring for this might look like

'''int -> bool
Return True if int x is odd, and False
otherwise.'''

● Written part is commonly shortened to:
● '''Return True iff int x is odd.

May 24 2012

IFF

● iff stands for if and only if.
● So in fact we wrote:
● '''Return True if int x is odd and only iff int x

is odd.'''
● We didn't specify what to do if x is not odd.
● But for boolean functions, it is understood

that we are to return False if we're not
returning True.

May 24 2012

If statement questions.

z = 50

if z < 10:

 print '10'

elif z < 25:

 print '25'

elif z < 100:

 print '100'

else:

 print '1000'

z = 50

if z > 10:

 print '10'

elif z > 25:

 print '25'

elif z > 100:

 print '100'

else:

 print '1000'

● What gets printed?

May 24 2012

If statement questions.

z = 50

if z < 10:

 print '10'

elif z < 25:

 print '25'

elif z < 100:

 print '100'

else:

 print '1000'

z = 50

if z > 10:

 print '10'

elif z > 25:

 print '25'

elif z > 100:

 print '100'

else:

 print '1000'

● What gets printed?

May 24 2012

If statement questions.

z = 50

if z < 10:

 print '10'

elif z < 25:

 print '25'

elif z < 100:

 print '100'

else:

 print '1000'

z = 50

if z > 10:

 print '10'

elif z > 25:

 print '25'

elif z > 100:

 print '100'

else:

 print '1000'

● What gets printed?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

